Approximate maximum likelihood hyperparameter estimation for Gibbs priors

نویسندگان

  • Zhenyu Zhou
  • Richard M. Leahy
چکیده

The parameters of the prior, the hyperparameters, play an important role in Bayesian image estimation. Of particular importance for the case of Gibbs priors is the global hyperparameter, beta, which multiplies the Hamiltonian. Here we consider maximum likelihood (ML) estimation of beta from incomplete data, i.e., problems in which the image, which is drawn from a Gibbs prior, is observed indirectly through some degradation or blurring process. Important applications include image restoration and image reconstruction from projections. Exact ML estimation of beta from incomplete data is intractable for most image processing. Here we present an approximate ML estimator that is computed simultaneously with a maximum a posteriori (MAP) image estimate. The algorithm is based on a mean field approximation technique through which multidimensional Gibbs distributions are approximated by a separable function equal to a product of one-dimensional (1-D) densities. We show how this approach can be used to simplify the ML estimation problem. We also show how the Gibbs-Bogoliubov-Feynman (GBF) bound can be used to optimize the approximation for a restricted class of problems. We present the results of a Monte Carlo study that examines the bias and variance of this estimator when applied to image restoration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome

Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data.   Methods: This study use...

متن کامل

Bayesian Analysis of Mixtures of Factor Analyzers

For Bayesian inference on the mixture of factor analyzers, natural conjugate priors on the parameters are introduced, and then a Gibbs sampler that generates parameter samples following the posterior is constructed. In addition, a deterministic estimation algorithm is derived by taking modes instead of samples from the conditional posteriors used in the Gibbs sampler. This is regarded as a maxi...

متن کامل

Automatic HyperParameter Estimation in fMRI

Maximum a posteriori (MAP) in the scope of the Bayesian framework is a common criterion used in a large number of estimation and decision problems. In image reconstruction problems, typically, the image to be estimated is modeled as a Markov Random Fields (MRF) described by a Gibbs distribution. In this case, the Gibbs energy depends on a multiplicative coefficient, called hyperparameter, that ...

متن کامل

Maximum a posterior linear regression with elliptically symmetric matrix variate priors

In this paper, elliptic symmetric matrix variate distribution is proposed as the prior distribution for maximum a posterior linear regression (MAPLR) based model adaptation. The exact close form solution of MAPLR with elliptically symmetric matrix variate priors is obtained. The effects of the proposed prior in MAPLR are characterized and compared with conventional maximum likelihood linear reg...

متن کامل

Generalized exponential distribution: Bayesian estimations

Recently two-parameter generalized exponential distribution has been introduced by the authors. In this paper we consider the Bayes estimators of the unknown parameters under the assumptions of gamma priors on both the shape and scale parameters. The Bayes estimators can not be obtained in explicit forms. Approximate Bayes estimators are computed using the idea of Lindley. We also propose Gibbs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on image processing : a publication of the IEEE Signal Processing Society

دوره 6 6  شماره 

صفحات  -

تاریخ انتشار 1995